Nonlinear Kalman filtering for censored observations

نویسندگان

  • Joseph Arthur
  • Adam Attarian
  • Franz Hamilton
  • Hien Tran
چکیده

The use of Kalman filtering, as well as its nonlinear extensions, for the estimation of system variables and parameters has played a pivotal role in many fields of scientific inquiry where observations of the system are restricted to a subset of variables. However in the case of censored observations, where measurements of the system beyond a certain detection point are impossible, the estimation problem is complicated. Without appropriate consideration, censored observations can lead to inaccurate estimates. Motivated by previous work on censored filtering in linear systems, we develop a modified version of the extended Kalman filter to handle the case of censored observations in nonlinear systems. We validate this methodology in a simple oscillator system first, showing its ability to accurately reconstruct state variables and track system parameters when observations are censored. Finally, we utilize the nonlinear censored filter to analyze censored datasets from patients with hepatitis C and human immunodeficiency virus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

Filtering a Nonlinear Slow-fast System with Strong Fast Forcing

Abstract. A three-mode nonlinear slow-fast system with the fast forcing is studied here as a model for filtering turbulent signals from partial observations. The model describes the interaction of two externally driven fast modes with a slow mode through catalytic nonlinear coupling. The special structure of the nonlinear interaction allows for the analytical solution for the first and second o...

متن کامل

Extended and Unscented Filtering Algorithms in Nonlinear Fractional Order Systems with Uncertain Observations

This paper is concerned with the state estimation problem in nonlinear fractional order discrete state-space systems with uncertain observations, when the random interruptions in the observation process are modelled by independent Bernoulli random variables. Two filtering algorithms are proposed for this class of systems; the first one is a generalization of the extended fractional Kalman filte...

متن کامل

An Ensemble Adjustment Kalman Filter for Data Assimilation

A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear filtering theory unifies the data assimilation and ensemble generation problem that have been key foci of prediction and predictability research for numerical weather and ocean prediction applications. A new algorithm, referred to as an ensemble adjustment Kalman filte...

متن کامل

Modelling Of The Underwater Targets Tracking With The Aid Of Pseudomeasurements Kalman Filter

Target motion analysis of the underwater target tracking by the UUV (Unmanned underwater vehicle) usually based on the bearing-only observations including azimuth and elevation angles. However, low angular resolution of hydro acoustic sonars is not enough for the good quality of tracking. Moreover, angular observations lead to nonlinear filtering such as Extended Kalman Filtering (EKF) which us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 316  شماره 

صفحات  -

تاریخ انتشار 2018